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1. Introduction

The black hole attractor mechanism has been an interesting subject over the past years,

which states that in a black hole background the moduli fields vary radially and get “at-

tracted” to certain specific values at the horizon which depend only on the quantized

charges of the black hole under consideration. As a result, the macroscopic entropy of the

black hole is given only in terms of the charges and is independent of the asymptotic values

of the moduli. It was first discovered in the context of N=2 extremal black holes [1, 2]

and was generalized to theories with higher derivative corrections in [3]. The attractor

mechanism for non-supersymmetric black holes was initiated in [4] and discussed more

extensively in following papers [5, 6] and [7].

Recently, Sen proposed an efficient way to calculate the entropy of an extremal black

hole, which is named as “entropy function” formalism [8]. The main steps can be summa-

rized as follows:

(i) Define a d-dimensional extremal black hole to be such an object that the near horizon

geometry is given by AdS2 × Sd−2. Choose a coordinate system in which the AdS2

part of the metric is proportional to −r2dt2 + dr2/r2. The black hole background is

supported by electric and magnetic fields, as well as various moduli scalar fields.
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(ii) Consider a general AdS2 × Sd−2 background characterized by the sizes of AdS2 and

Sd−2, the electric and magnetic fields and various scalar fields. Define an entropy

function by carrying an integral of the Lagrangian density over Sd−2 and then taking

the Legendre transform of the integral with respect to the parameters ei denoting the

electric fields. The result is a function of the moduli values us, the sizes v1 and v2 of

AdS2 and Sd−2, the electric charges qi conjugate to ei, and the magnetic charges pa.

(iii) For given electric and magnetic charges {qi} and {pa}, the values us of the scalar

fields as well as the sizes v1 and v2 are determined by extremizing the entropy function

with respect to the variables us, v1 and v2. Finally the entropy is given by the value

of the entropy function at the horizon.

This is a very simple and powerful method to calculate entropy of such kind of black

holes. In particular, one can easily obtain the corrections to the entropy due to higher

order corrections in the effective Lagrangian. Several related works are given in [9].

As is well known that in string theory, some kinds of black holes can be constructed

by putting D-branes together and the Bekenstein-Hawking entropy can be understood by

counting the degeneracies of the microstates of such configurations. Such extremal black

holes have AdS3 as part of the near horizon geometry in ten dimensions instead of AdS2.

After dimensional reduction down to lower dimensions, the near horizon geometry turns

out to be AdS2 times a sphere. The entropy function for D1D5P extremal black hole in

Type IIB string theory and D2D6NS5P extremal black hole in Type IIA were calculated

in [10] and [11], where it was shown that the entropy function formalism could give the

correct entropy both in ten dimensions and lower dimensions.

However, for some non-extremal black holes constructed by D-branes, part of the near

horizon geometry turns out to be BTZ black hole. Since BTZ black hole is locally equivalent

to AdS3, one expects that the entropy function formalism is also applicable for those black

holes. In this paper we show it is indeed the case: after taking the near horizon limit, the

entropy function for 5d non-extremal black hole can give the Bekenstein-Hawking entropy

precisely, while the entropy function for 4d non-extremal black hole gives the Bekenstein-

Hawking entropy up to a factor, which can be understood via a rescaling transformation

relation of entropy function.

The rest of the paper is organized as follows: In section 2 we review the basic properties

of the non-extremal black holes. We give a general proof of the entropy function formula

for black hole with BTZ as part of its near horizon geometry in section 3. We calculate the

entropy function for non-extremal black holes in ten dimensions and lower dimensions in

section 4 and section 5 respectively. Finally in the last section 6 we summarize our results

and discuss related topics.

2. Non-extremal black holes in string theory

It is known that non-extremal black holes can be constructed by putting D-branes together,

so that the entropy can also be obtained by counting the degrees of freedom of the D-brane

system after taking near-extremal limit [12]. The microscopic entropy of such kinds of black

– 2 –



J
H
E
P
0
5
(
2
0
0
7
)
0
2
3

holes can also be understood via U-duality [13]. In this section we make a brief review

for the salient properties of non-extremal black holes which are necessary in the following

calculations. For reviews, see [14].

2.1 The 5d non-extremal black hole

The five dimensional non-extremal black hole can be constructed by using D1-branes, D5-

branes and momentum P , which is a solution of Type IIB supergravity. The effective

action is

S =
1

16πG10
N

∫

d10x
√

−det g

{

e−2φ[R + 4(∇φ)2] − 1

2

∑

n

1

n!
F 2

n

}

, (2.1)

where Fn denote the field strengths carried by the D-branes.

The non-extremal black hole metric in d = 10 is given as follows in string frame:

ds2
10 = f1(r)

− 1

2 f5(r)
− 1

2 [−dt2 + dz2 + K(r)(cosh αmdt − sinhαmdz)2]

+f1(r)
1

2 f5(r)
− 1

2 dx2
‖ + f1(r)

1

2 f5(r)
1

2

[

dr2

1 − K(r)
+ r2dΩ2

3

]

,

e−2φ =
f5

f1
, (2.2)

where

K(r) =
r2
H

r2
, f1(r) ≡ 1+

r2
1

r2
= 1+

r2
H sinh2 α1

r2
, f5(r) ≡ 1+

r2
5

r2
= 1+

r2
H sinh2 α5

r2
, (2.3)

and α’s are the boost parameters. The D1-branes can be viewed as the electric source

carrying 3-form electric field strength while the D5-branes can be regarded as the magnetic

source carrying dual 3-form magnetic field strength. The conserved charges are given by

Q1 =
V r2

H

gs

sinh(2α1)

2
, Q5 =

r2
H

gs

sinh(2α5)

2
, N =

R2
zV r2

H

g2
s

sinh(2αm)

2
, (2.4)

where the fundamental string length ls has been taken to be 1. Here V = R5R6R7R8

where Ri, i = 5, 6, 7, 8 denote the radii of the four coordinates in x‖ and Rz is the radius of

the compact dimension z, along which there is a momentum P . The Bekenstein-Hawking

entropy is

SBH =
2πRzV r3

H

g2
s

(cosh α1 cosh α5 cosh αm). (2.5)

To obtain the near horizon geometry, we take the limit

r2 ≪ r2
1,5 ≡ r2

H sinh2 α1,5, (2.6)

but we do not demand a similar condition on rm ≡ rH sinhαm. This limit means that

α1, α5 tend to be very large in the near horizon region, so that sinhα1,5 ≈ cosh α1,5. Note

that the near horizon limit is just the decoupling limit in the AdS/CFT correspondence. In

addition, when rH → 0 and α1, α5 → ∞ while keeping the charges fixed, the non-extremal
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black hole turns out to be extremal. After taking such a near horizon limit, the metric

becomes

ds2 = −(ρ2 − ρ2
+)(ρ2 − ρ2

−)

λ2ρ2
dt2 +

λ2ρ2

(ρ2 − ρ2
+)(ρ2 − ρ2

−)
dρ2

+ρ2

(

dy − ρ+ρ−
λρ2

dt

)2

+ λ2dΩ2
3 +

r1

r5
dx2

‖, (2.7)

which is of the form BTZ × S3 × T 4. Note that here we have made the coordinate trans-

formation

ρ2 ≡ r2 + ρ2
−, y ≡ z

λ
(2.8)

and have introduced the parameters

ρ+ ≡ rH cosh αm, ρ− ≡ rH sinhαm, λ2 ≡ r1r5. (2.9)

2.2 The 4d non-extremal black hole

The four dimensional non-extremal black hole can be taken as a non-extremal intersection

of D2-branes in (z, x2), D6-branes in (z, x2, x3, x4, x5, x6), NS5-branes in (z, x3, x4, x5, x6)

and momentum P along z, which is a solution of type IIA supergravity with the effective

action

S =
1

16πG10
N

∫

d10x
√

−det g

{

e−2φ

[

R + 4(∇φ)2 − 1

3
H2

]

− G2 − 1

12
F ′2

− 1

288
ǫµ1···µ10Fµ1µ2µ3µ4

Fµ5µ6µ7µ8
Bµ9µ10

}

, (2.10)

where the 2-form G = dA, 3-form H = dB, 4-form F = dC are the field strengths carried

by D6-branes, NS5-branes, D2-branes respectively and F ′ = F + 2A ∧ H.

The four dimensional non-extremal black hole metric, written in ten dimensional string

frame, is given as follows:

ds2
10 = (f2f6)

− 1

2 [−K−1fdt2 + K(dz + (K ′−1 − 1)dt)2]

+f5(f2f6)
− 1

2 dx2
2 + f

1

2

2 f
− 1

2

6 (dx2
3 + dx2

4 + dx2
5 + dx2

6)

+f5(f2f6)
1

2 (f−1dr2 + r2dΩ2
2),

e−2φ = f−1
5 f

3

2

6 f
− 1

2

2 , (2.11)

where

f2 ≡ 1 +
r2

r
= 1 +

rH sinh2 α2

r
, f5 ≡ 1 +

r5

r
= 1 +

rH sinh2 α5

r
,

f6 ≡ 1 +
r6

r
= 1 +

rH sinh2 α6

r
, K ≡ 1 +

rK

r
= 1 +

rH sinh2 αK

r
,

K ′−1 = 1 − qK

r
K−1 = 1 − rH sinh αK cosh αK

r
K−1, f = 1 − rH

r
. (2.12)

Here the D2-branes can be taken as the electric source carrying 4-form electric field strength

while the D6-branes and the NS5-branes can be taken as the magnetic source carrying
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dual 2-form and 3-form magnetic field strengths respectively. Then we can obtain the

conserved charges

Q2 =
rHV

gs
sinh 2α2, Q5 = rHR2 sinh 2α5,

Q6 =
rH

gs
sinh 2α6, N =

rHV R2
zR2

g2
s

sinh 2αK , (2.13)

where the fundamental string length ls has been set to be 1. Here V = R3R4R5R6 where

Ri, i = 2, 3, 4, 5, 6 denote the radii of the coordinates xi and Rz is the radius of the compact

dimension z. The Bekenstein-Hawking entropy is

SBH =
8πr2

HV R2Rz

g2
s

cosh α2 cosh α5 cosh α6 cosh αK . (2.14)

The near horizon geometry can be obtained in a similar way. First we take the near

horizon limit, i.e. we require that

r ≪ r2,5,6 ≡ rH sinh2 α2,5,6, (2.15)

but we do not demand a similar condition on rK ≡ rH sinh2 αK . This limit means that

α2, α5, α6 tend to be very large when the near horizon region is approached, so that

sinh α2,5,6 ≈ cosh α2,5,6. Note that when rH → 0 and α2, α5, α6 → ∞ while keeping the

charges fixed, the non-extremal black hole turns out to be extremal. After taking near

horizon limit, the metric becomes

ds2 = −(ρ2 − ρ2
+)(ρ2 − ρ2

−)

λ2ρ2
dτ2 +

λ2ρ2

(ρ2 − ρ2
+)(ρ2 − ρ2

−)
dρ2

+ρ2

(

dy − ρ+ρ−
λρ2

dτ

)2

+
λ2

4
dΩ2

2

+
r5

(r2r6)
1

2

dx2
2 +

(

r2

r6

)
1

2
(

dx2
3 + dx2

4 + dx2
5 + dx2

6

)

, (2.16)

which is of the form BTZ × S2 × S1 × T 4. Note that here we have made the coordinate

transformation

τ = 2
√

r5t, y =
z

(r2r6)
1

4

, ρ2 = r + ρ2
− (2.17)

and have introduced the parameters

ρ2
+ ≡ rH cosh2 αK , ρ2

− ≡ rH sinh2 αK , λ2 ≡ 4r5
√

r2r6. (2.18)

3. The entropy function formalism: general proof

In this section we will give a detailed derivation of the entropy function for non-extremal

black holes with BTZ as part of the near horizon geometry, following [10] and [11]. Note

that the entropy function formalism originates from Wald’s entropy formula [15], which
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requires that the black hole under consideration should have a bifurcate horizon. Then in

the entropy function formalism, the entropy of an extremal black hole should be taken as

the extremal limit of a non-extremal black hole. So it is natural to expect that the entropy

function formalism is also applicable to non-extremal black holes.

A generalized form of Wald formula was proposed in [16], which states that

SBH = 4π

∫

H

dxH

√

detgH
∂L

∂Rµνλρ
g⊥µλg⊥νρ, (3.1)

where L is the Lagrangian density, detgH is the determinant of the horizon metric and

g⊥µν denotes the orthogonal metric obtained by projecting onto subspace orthogonal to the

horizon. For a metric of the general form

ds2 = gttdt2 + gyydy2 + 2gtydtdy + grrdr2 + d~x2, (3.2)

the orthogonal metric is defined as

g⊥µν = (Nt)µ(Nt)ν + (Nr)µ(Nr)ν , (3.3)

where Nt and Nr are unit normal vectors to the horizon

Nt =

√

gyy

gttgyy − (gty)2

(

1, 0,− gty

gyy
, 0

)

, Nr =

(

0,
1√
grr

, 0, 0

)

. (3.4)

Consider the general near horizon metric which has a BTZ part

ds2 = v1

[

− (ρ2 − ρ2
+)(ρ2 − ρ2

−)

λ2ρ2
dτ2 +

λ2ρ2

(ρ2 − ρ2
+)(ρ2 − ρ2

−)
dρ2 (3.5)

+ρ2

(

dy − ρ+ρ−
λρ2

dτ

)2]

+ v2d~x2.

The relevant orthogonal metric and Riemann tensor components are given below

g⊥ττ =
(ρ2

+ + ρ2
− − ρ2)v1

λ2
, g⊥τy = −ρ+ρ−v1

λ
,

g⊥yy =
ρ2
+ρ2

−v1

(ρ2
+ + ρ2

− − ρ2)
, g⊥ρρ =

λ2ρ2v1

(ρ2 − ρ2
+)(ρ2 − ρ2

−)
, (3.6)

Rτρτρ =
ρ2(ρ2 − ρ2

+ − ρ2
−)v1

λ2(ρ2 − ρ2
+)(ρ2 − ρ2

−)
,

Ryρyρ = − ρ4v1

(ρ2 − ρ2
+)(ρ2 − ρ2

−)
,

Rτρyρ =
ρ2ρ+ρ−v1

λ(ρ2 − ρ2
+)(ρ2 − ρ2

−)
. (3.7)

Then the Wald formula (3.1) can be rewritten as

SBH =
4

∑

i=1

Si, (3.8)
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where

S1 = 8π

∫

H

dxH

√

detgH
∂L

∂Rτρτρ
g⊥ττg

⊥
ρρ

= −8πλ2v1

∫

H

√

detgH
∂L

∂Rτρτρ
Rτρτρ,

S2 = 8π

∫

H

dxH

√

detgH
∂L

∂Ryρyρ
g⊥yyg

⊥
ρρ

= 8π
λ2ρ2

+ρ2
−v1

ρ2(ρ2 − ρ2
+ − ρ2

−)

∫

H

√

detgH
∂L

∂Ryρyρ
Ryρyρ,

S3 = 16π

∫

H

dxH

√

detgH
∂L

∂Rτρyρ
g⊥τyg

⊥
ρρ

= −16πλ2v1

∫

H

√

detgH
∂L

∂Rτρyρ
Rτρyρ,

S4 = 8π

∫

H

dxH

√

detgH
∂L

∂Rτyτy

(

g⊥ττg⊥yy − (g⊥τy)
2
)

= 0. (3.9)

Next we define a function f as integral of the Lagrangian density over the horizon,

f ≡
∫

H

dxH

√

−detgL (3.10)

and rescale the Riemann tensor components as proposed in [8],

Rτρτρ → λ1Rτρτρ, Rρyρy → λ2Rρyρy,

Rτρyρ → λ3Rτρyρ, Rτyτy → λ4Rτyτy. (3.11)

It can be seen that the rescaled Lagrangian Lλ behaves as

∂Lλ

∂λi
= R

(i)
µνλρ

∂Lλ

∂R
(i)
µνλρ

, i = 1, 2, 3, 4 (3.12)

Then the rescaled function fλ satisfies the following relation

∂fλ

∂λi

∣

∣

∣

∣

λi=1

= v1

∫

H

dxH

√

detgHR
(i)
µνλρ

∂Lλ

∂R
(i)
µνλρ

(3.13)

with no summation on the right hand side for i. Substituting these relations into (3.8)

and (3.9), we obtain the following expression for SBH

SBH = −2πλ2

(

∂fλ1

∂λ1
+

ρ2
+ρ2

−

ρ2(ρ2
+ + ρ2

− − ρ2)

∂fλ2

∂λ2
+

∂fλ3

∂λ3

)
∣

∣

∣

∣

λ1=λ2=λ3=1

. (3.14)

Furthermore, since the general Lagrangian should be diffeomorphism invariant, the com-

ponents of the Riemann tensor entering the Lagrangian must be accompanied by the cor-

responding components of the inverse metric. Thus we have the following relations

λ1Rτρτρg
ττgρρ ∼ λ1v

−1
1 , λ2Rρyρyg

yygρρ ∼ λ2v
−1
2 ,

λ3Rτρyρg
τygρρ ∼ λ3v

−1
3 , λ4Rτyτyg

ττgyy ∼ λ4v
−1
4 . (3.15)
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Assume that the n-form electric field strength Fτρyp···q and m-form magnetic field strength

H(m) satisfy Fτρyp···q = e1 and H(m) = pa

√
Ωm at the horizon, where e1, pa are constants

to be determined and Ωm denotes the measure of m-dimensional unit sphere. In the

Lagrangian the electric field strength behaves as

√

(gττgyy − (gτy)2)gρρgpp · · · gqqFτρyp···q ∼ e1v
− 3

2

1 . (3.16)

Note that no other contributions have any dependence on v1. Then we can rewrite fλ as a

function of scalars, electric and magnetic field strengths

fλ(us, v1, v2, e1, pa) = v
3

2

1 h
(

us, v2, λiv
−1
1 , e1v

− 3

2

1 , pa

)

, (3.17)

where h is a general function and the factor v
3

2

1 comes from
√
−detg.

Using (3.17), one can easily derive the following equation

4
∑

i=1

λi
∂fλi

∂λi

∣

∣

∣

∣

λi=1

=
3

2

(

f − e1
∂f

∂e1

)

− v1
∂f

∂v1
. (3.18)

Then the entropy can be reexpressed by substituting (3.18) into (3.14)

SBH = −2πλ2

[

3

2

(

f − e1
∂f

∂e1

)

− ∂f

∂λ2
− ∂f

∂λ4
+

ρ2
+ρ2

−

ρ2(ρ2
+ + ρ2

− − ρ2)

∂f

∂λ2

]

. (3.19)

To simplify the above expression, we have to make use of the following relations, which

can be derived from the symmetries of the Lagrangian,

∂f

∂λ1
=

∂f

∂λ2
,

∂f

∂λ3
= − ρ2

+ρ2
−

ρ2(ρ2
+ + ρ2

− − ρ2)

∂f

∂λ2
,

∂f

∂λ1
=

∂f

∂λ3
+

∂f

∂λ4
. (3.20)

With the help of (3.20), we obtain a simple expression for the entropy

SBH = πλ2

(

e1
∂f

∂e1
− f

)

≡ πλ2F. (3.21)

Thus we have completed the general derivation for the entropy function and the entropy

can be obtained by extremizing the entropy function with respect to the moduli

∂F

∂us
= 0,

∂F

∂vi
= 0, i = 1, 2, (3.22)

and then substituting the values of the moduli back into F . Note that the relation qi = ∂f
∂ei

does not hold any more in the non-extremal case.

Finally, we would like to stress how the entropy function changes if we rescale the

coordinates of the background metric. Note that in order to obtain the standard BTZ

metric, some of the coordinates have been rescaled in the previous sections, which can be

seen from (2.8) and (2.17). Suppose we make the following coordinate rescaling

t → At (3.23)
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where A is an arbitrary constant. Since the Lagrangian should be diffeomorphism invariant,

one can see from the definition of f (3.10) that under the rescaling (3.23), one has

f → Af. (3.24)

Thus the entropy function and the entropy behave as

F → AF, SBH → ASBH. (3.25)

Such transformations will be used in the following sections.

4. Entropy function in ten-dimensional spacetime

We will calculate the entropy function for the two concrete examples presented in section 2

in the present section. We find that for the five-dimensional non-extremal black hole, the

result agrees with the Bekenstein-Hawking entropy precisely, while for the four-dimensional

non-extremal black hole, the result is different from the Bekenstein-Hawking entropy by a

factor, which can be understood according to the arguments given at the end of the last

section.

4.1 Case 1: the 5d non-extremal black hole

First we determine the near horizon field configuration in ten dimensional string frame as

follows

ds2 = v1

(

− (ρ2 − ρ2
+)(ρ2 − ρ2

−)

λ2ρ2
dt2 +

λ2ρ2

(ρ2 − ρ2
+)(ρ2 − ρ2

−)
dρ2

+ρ2

(

1

λ
dz − ρ+ρ−

λρ2
dt

)2)

+ v2

(

λ2dΩ2
3 +

r1

r5
dx2

‖

)

,

e−2φ = us, Ftρz = e1 =
2ρ

r2
1

v
3

2

1

v
7

2

2

, Gθϕψ = 2r2
5 sin2 θ sinϕ. (4.1)

Using the above field configuration, the effective action (2.1) turns out to be

L =
1

16πG10
N

[

us
6(v1 − v2)

r1r5v1v2
+

r1r5

ρ2v3
1

e2
1

2
− 2r5

r3
1v

3
2

]

(4.2)

and the entropy function becomes

F =
V Rzr

3
1ρ

2g2
sr5

[

us
6(v2 − v1)

r1r5v1v2
+

r1r5

ρ2v3
1

e2
1

2
+

2r5

r3
1v

3
2

]

, (4.3)

where we have set ls = 1 so that G10
N = 8π6g2

s . Substituting the value of e1 and solving the

equations
∂F

∂us
= 0,

∂F

∂vi
= 0, i = 1, 2, (4.4)

we have

us =
r2
5

r2
1

, v1 = 1, v2 = 1, (4.5)
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which gives the correct values of the moduli fields. Put the solution (4.5) back into F , we

obtain

F =
2V Rz

g2
s

ρ. (4.6)

Furthermore,

SBH = πλ2F |ρ=ρ+

=
2πV Rz

g2
s

r1r5rH cosh αm

= SBH, (4.7)

which is just the black hole entropy in the decoupling limit. Note that here we have used

the fact that in this limit, sinhα1,5 ≈ cosh α1,5.

4.2 Case 2: the 4d non-extremal black hole

The entropy function for four-dimensional black hole can be calculated in a similar way.

First we write down the near horizon field configuration in ten dimensional string frame

ds2 = v1

[

− 1

(r2r6)
1

2

(ρ2 − ρ2
+)(ρ2 − ρ2

−)

ρ2
dt2 +

4r5(r2r6)
1

2 ρ2

(ρ2 − ρ2
+)(ρ2 − ρ2

−)
dρ2

+
ρ2

(r2r6)
1

2

(

dz − ρ+ρ−
ρ2

dt

)2]

+v2

[

r5(r2r6)
1

2 dΩ2
2 +

r5

(r2r6)
1

2

dx2
2 +

(

r2

r6

)
1

2

dx2
‖

]

,

e−2φ = us, Ftzρ2 = e1 =
ρ

r2

v
3

2

1

v
5

2

2

,

H2θϕ = −1

2
r5 sin θ, Gθϕ = −1

2
r6 sin θ. (4.8)

Under the above field configuration, the effective action (2.10) becomes

L =
1

16πG10
N

[

us

(

4v1 − 3v2

2r5(r2r6)
1

2 v1v2

− 1

2r5(r2r6)
1

2 v3
2

)

− r6

2r2r2
5v

3
2

+
e2
1r2r6

2ρ2r2
5v

3
1v2

]

(4.9)

and the entropy function turns out to be

F =
4ρV R2Rz

g2
s

r2v
1

2

2

2(r2r6)
3

2 v
3

2

1

{

(r2r6)
3

2 v3
1

r2v
3
2

+v2
1

[

r
1

2

2 r
3

2

6 v1v2+r2r5us

(

v1−4v1v
2
2+3v3

2

)

]}

, (4.10)

Solving the equations
∂F

∂us
= 0,

∂F

∂vi
= 0, i = 1, 2, (4.11)

we arrive at the correct attractor values of the moduli fields

us =
r

3

2

6

r
1

2

2 r5

, v1 = 1, v2 = 1. (4.12)
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Substituting the solutions (4.12) back into F , we obtain

F =
4ρV R2Rz

g2
s

. (4.13)

Finally,

SBH = πλ2F |ρ=ρ+

=
16πV R2Rz

g2
s

(r2r6)
1

2 r5ρ+

= 2
√

r5SBH, (4.14)

where we have use the fact that sinhα2,5,6 ≈ cosh α2,5,6 in the near horizon region and the

result does not agree with the Bekenstein-Hawking entropy by a factor 2
√

r5. Note that

one has to make a rescaling transformation (2.17) in order to transform the part spanned

by coordinates (t, ρ, z) in (4.8) to be a standard BTZ metric. Further note that one has the

transformation relation (3.25) due to the rescaling (3.23). Thus the result (4.14) indeed

gives us the entropy of 4d black holes in ten dimensional string frame.

5. Entropy function in lower dimensions

It is well known that after dimensional reduction, the extremal black hole in Type II string

theory has AdS2 as part of its near horizon geometry rather than AdS3. It has already

been noticed in [10] and [11] that although the entropy function could give the correct

entropy in lower dimensions, not all the moduli fields could take definite values. In this

section we first do the dimensional reduction down to six and five dimensions, keeping the

BTZ part of the near horizon metric invariant, then we find that the same results for the

entropy can be obtained while some of the moduli fields do not take definite values.

5.1 Case 1: the 5d non-extremal black hole

We do the dimensional reduction on x‖ and obtain a six-dimensional black string with near

horizon geometry BTZ × S3. The near horizon field configuration

ds2 = v1

(

− (ρ2 − ρ2
+)(ρ2 − ρ2

−)

λ2ρ2
dt2 +

λ2ρ2

(ρ2 − ρ2
+)(ρ2 − ρ2

−)
dρ2

+ρ2

(

1

λ
dz − ρ+ρ−

λρ2
dt

)2)

+ v2λ
2dΩ2

3, (5.1)

e−2φ = us, e2ψ = uT

Ftρz = e1 =
2ρ

uT r2
5

v
3

2

1

v
3

2

2

, Gθϕψ = 2r2
5 sin2 θ sin ϕ, (5.2)

where e2ψ stands for the single moduli for T 4.

The six-dimensional effective Lagrangian, which can be obtained by the standard pro-

cedure (see e.g. [17]), becomes

L =
1

16πG6
N

√

−detg(6)e2ψ

{

e−2φ
[

R(6) + 4(∇φ)2
]

− 1

2

∑

n

1

n!
F 2

n

}

, (5.3)
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where the superscript stands for that the quantities stay in six dimensions. Using the near

horizon field configuration and the effective action, the entropy function is expressed as

F =
V Rzρr1r5

2g2
s

v
3

2

1 v
3

2

2 uT

[

us
6(v2 − v1)

r1r5v1v2
+

r1r5

ρ2v3
1

e2
1

2
+

2r5

r3
1v

3
2

]

. (5.4)

Solving the equations after substituting the value of e1 into F ,

∂F

∂us
= 0,

∂F

∂uT
= 0,

∂F

∂vi
= 0, i = 1, 2, (5.5)

we obtain

v1 = v2 = v, us =
r2
5

r2
1v

2
, uT =

r2
1

r2
5

, (5.6)

where v is an arbitrary constant. Finally, after substituting the solutions back into F , we

get

SBH ≡ πλ2F |ρ=ρ+

=
2πV Rzr1r5ρ+

gs

= SBH, (5.7)

which is again the entropy of 5d non-extremal black holes.

5.2 Case 2: the 4d non-extremal black hole

Similarly, we do the dimensional reduction on x2 × x‖ and obtain a five-dimensional black

string with near horizon geometry BTZ × S2. The near horizon field configuration is

ds2 = v1

[

− 1

(r2r6)
1

2

(ρ2 − ρ2
+)(ρ2 − ρ2

−)

ρ2
dt2 +

4r5(r2r6)
1

2 ρ2

(ρ2 − ρ2
+)(ρ2 − ρ2

−)
dρ2

+
ρ2

(r2r6)
1

2

(

dz − ρ+ρ−
ρ2

dt

)2]

+ v2r5(r2r6)
1

2 dΩ2
2,

e−2φ = us, e2ψ = uT , e
ψ1
2 = u1,

F
(5)
tzρ = e1 =

ρu1

uT

r
1

4

2

r
1

2

5 r
3

4

6

v
3

2

1

v2
, H

(5)
θϕ = −1

2
r5 sin θ, Gθϕ = −1

2
r6 sin θ, (5.8)

where e2ψ and e
ψ1
2 denote the single moduli for T 4 and S1 respectively.

The effective Lagrangian in five dimensions can be expressed as

L =
1

16πG5
N

√

−detg(5)e2ψe
ψ1
2

[

e−2φ
(

R(5) − e−ψ1H(5)2
)

− G2 − 1

3
e−ψ1F (5)2

]

, (5.9)

where the superscript signifies that the quantities stay in five dimensions and the 2-form

magnetic field strength H(5) as well as the 3-form electric field strength F (5) originate from

the ten-dimensional field strengths H2θϕ and Ftzρ2. Note that we have omitted the terms
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involving the covariant derivatives of the scalar fields because they are set to be constants

at the horizon.

We can work out the five-dimensional entropy function by making use of the above

effective action and near horizon field configuration

F =
4V R2Rzρr

3

2

5 (r2r6)
1

4 v
3

2

1 v2uT u1

g2
s

[

us

(

3v2−4v1

2r5(r2r6)
1

2 v1v2

+
1

2u2
1r2r6v

2
2

)

+
r6

2r2r2
5v

2
2

+
e2
1(r2r6)

1

2

2u2
1ρ

2r5v3
1

]

. (5.10)

After substituting the value of e1 we can solve the equations

∂F

∂ui
= 0, i = s, T, 1,

∂F

∂vj
= 0, j = 1, 2, (5.11)

and obtain

v1 = v, v2 = v,

us =
r

3

2

6

r5r
1

2

2 v
, uT =

r2

r6
, u1 =

r
1

2

5

(r2r6)
1

4 v
1

2

, (5.12)

where v is an arbitrary constant, once again.

The entropy can be obtained after substituting the solution back into F

SBH ≡ πλ2F |ρ=ρ+

=
16πV R2Rz(r2r6)

1

2 r5ρ+

g2
s

= 2
√

r5SBH. (5.13)

Here the factor 2
√

r5 appears again. The reason is the same as the one discussed in the

previous section.

6. Summary and discussion

The entropy function formalism proposed by Sen is an efficient way to calculate the entropy

of a black hole with AdS2 as part of the spacetime geometry. However, as far as we know,

most of the work have been dealing with extremal black holes. In this paper we show

that for some non-extremal black holes in string theory with BTZ as part of the near

horizon geometry, the entropy function formalism also works very well and can reproduce

the Bekenstein-Hawking entropy both in ten dimensions and lower dimensions. Thus our

work generalizes the entropy function formalism to certain non-extremal black holes and we

expect that it might also work for other non-extremal black objects, such as black p-branes.

We notice that a relevant issue was presented recently in [7], which describes how to

apply the entropy function formalism to near-extremal case. They argued that in order

to deal with the runaway behavior of the entropy function, one has to introduce a slight

– 13 –
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amount of non-extremality on the black hole side. The non-extremality parameter ǫ trun-

cates the infinite throat of AdS2 in to a finite size, thus the near horizon geometry is no

longer AdS2 × Sd−2. But for sufficiently large charges and small ǫ there will be a region

in the black hole spacetime where the geometry is approximately AdS2 × Sd−2, and one

can use the entropy function formalism to calculate the entropy in this region. However, in

our examples the near horizon geometry BTZ do not rely on the near-extremal limit, but

the entropy function formalism still works. It would be interesting to study the relations

between the two approaches extensively.

Recently, an intuitional explanation of the black hole attractor/non-attractor behavior

has been proposed in [6], which states that the attractor/non-attractor behavior is closely

related to the near horizon geometry. For extremal black holes with AdS2 near horizon

geometry, the physical distance from a finite radius coordinate r0 to the horizon turns out

to be infinite, while for non-extremal black holes the distance remains finite. It is clear that

the infinite physical distance is crucial to allow a scalar field to forget its initial conditions

while in non-extremal case the field only has finite “time” until it reaches the horizon. In

our examples, the physical distance from a finite radial coordinate ρ0 to the outer horizon

becomes

d =

∫ ρ0

ρ+

√
gρρdρ (6.1)

= λ log
(
√

ρ2 − ρ2
+ +

√

ρ2 − ρ2
−

)

|ρ=ρ0

ρ=ρ+

= λ
[

log
(
√

ρ2
0 − ρ2

+ +
√

ρ2
0 − ρ2

−

)

− log
(
√

ρ2
+ − ρ2

−

)]

,

which turns out to be finite. However, in certain cases, the scalar fields considered here do

exhibit some “attractor” behavior, that is, the values at the horizon can be determined by

extremizing the entropy function. So it is worth investigating this phenomenon thoroughly.
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